NTUITIVE

ML4H 2022 New Orleans, LA

An Empirical Study on Activity Recognition in Long Surgical Videos

Zhuohong He, Ali Mottaghi, Aidean Sharghi, Muhammad Abdullah Jamal, Omid Mohareri

Overview

Introduction:

- Surgical videos captured by endoscopes, microscopes, and external cameras are readily available and information-dense.
- Understanding these videos provides valuable insight into operating room (OR) efficiency and safety which improve patient care.

Motivation:

- Previous SOTA on surgical activity recognition use lightweight framewise backbones due to the small dataset sizes.
- No previous study on peri-operative activity recognition on largescale OR dataset.

Purpose: (1) To empirically study spatio-temporal clip-wise models on surgical datasets. (2) To investigate unsupervised and supervised domain adaptation techniques.

Models

Due to the length of surgical videos, we employ a two-stage model. A backbone model extracts features for short video clips. Using the features, a temporal model predicts classes with long-term dependencies. **Backbones:** We benchmarked four SOTA spatio-temporal backbones: <u>Inflated 3DConvNet (I3D), SlowFast, TimeSformer, Video Swin</u> <u>Transformer</u>

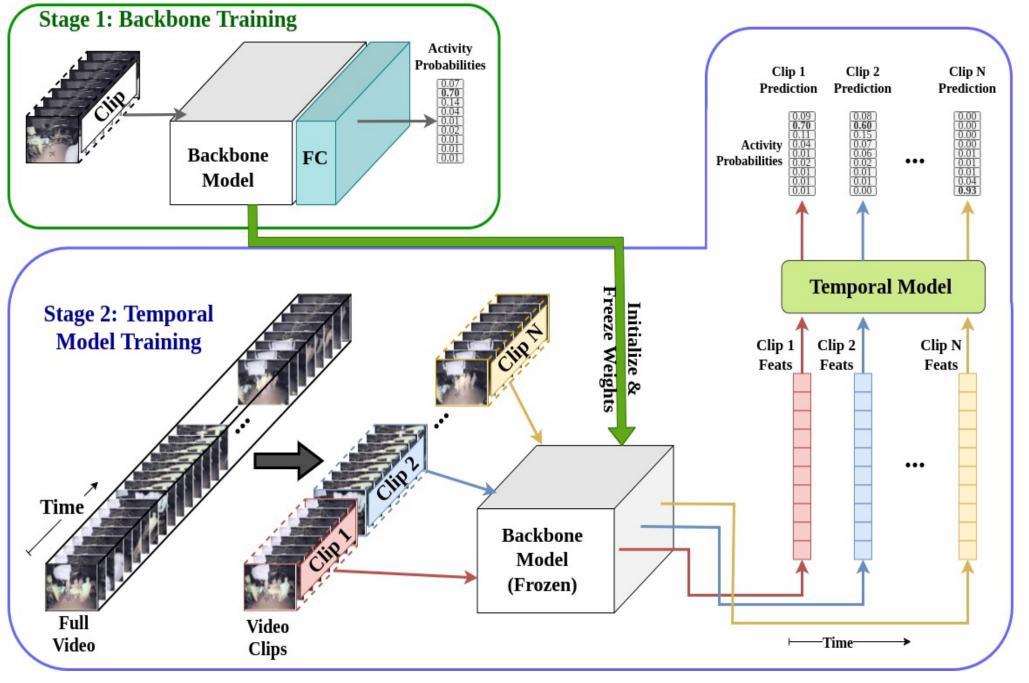
Temporal Model: We selected the <u>Gated Recurrent Unit</u> (GRU), <u>Temporal Convolution Network</u> (TCN), and <u>Transformer</u> models.

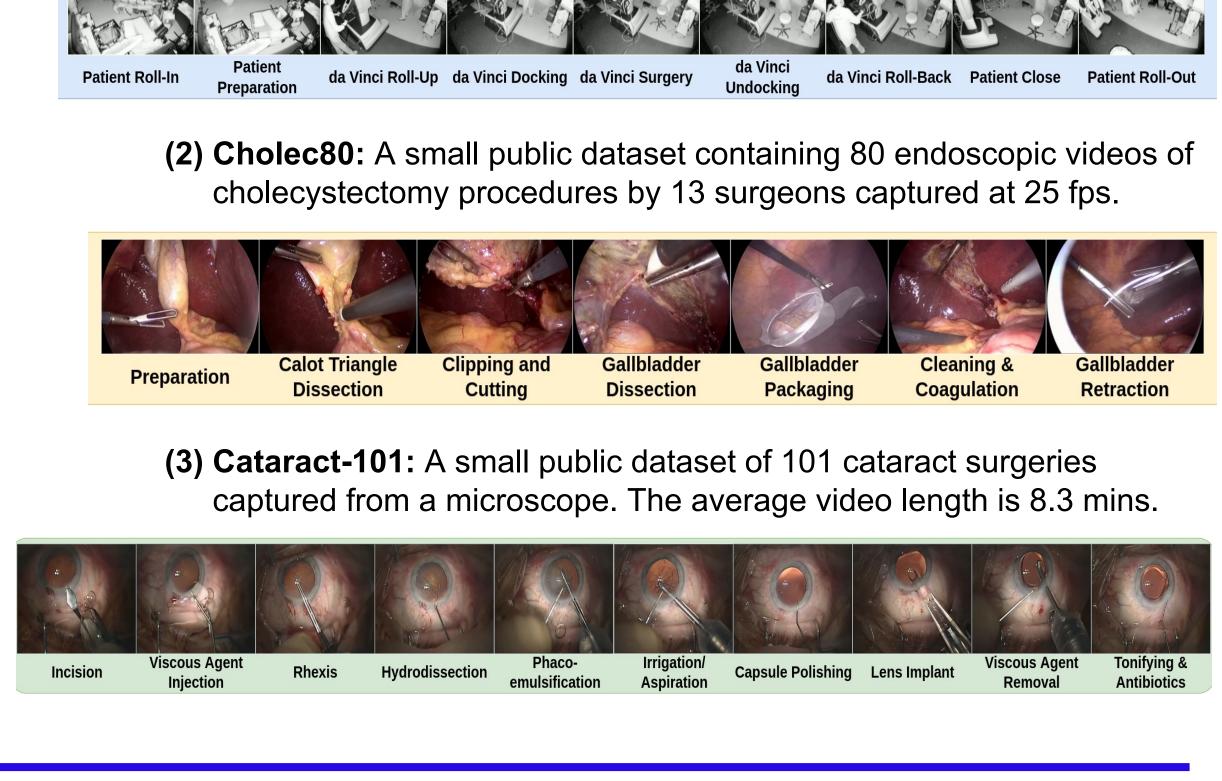
Datasets

(1) Operating Room Activity Recognition (OR-AR): A large private dataset of 820 videos captured by time-of-flight sensors placed around the operating room. Each video ranges from 2-8 hours. Videos includes 30 procedure types across two ORs from 27 surgeons.

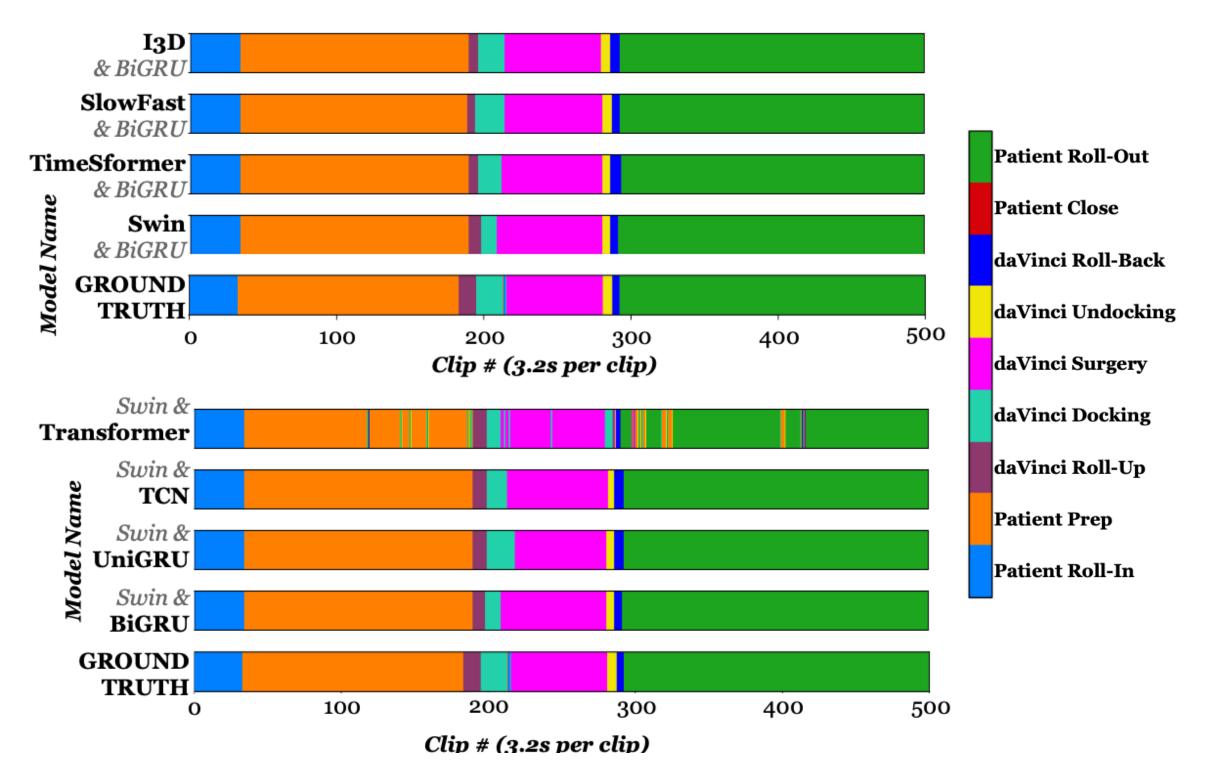
Methods

Pretrain: Kinetics400, ImageNet, Random Initialization





Results							
•	Model	# of Params	FLOPs	Top-1 Ac	c. on test sets		
				Cholec80	SAR (Random)		
	I3D	$27.2\mathrm{M}$	$28.7 \mathrm{G}$	$71.36{\pm}2.19$	$85.33 {\pm} 0.67$		
	SlowFast	$33.6\mathrm{M}$	$12.7 \mathrm{G}$	$71.38{\pm}3.59$	$86.26{\pm}1.50$		
	TimeSformer	121.3M	$196.1 \mathrm{G}$	$69.02 {\pm} 0.26$	$84.39 {\pm} 0.20$		
	Swin Transformer	$88.1\mathrm{M}$	141.0G	$79.09{\pm}1.29$	$86.25 {\pm} 2.50$		



	Last Epoch	Temporal Model				
	(val-mAP)	Transformer	Bi-GRU	Uni-GRU	TCN	
Backbone	I3D	$79.30{\pm}0.06$	$94.04{\pm}0.66$	$90.95{\pm}0.74$	$91.33{\pm}0.23$	
	SlowFast	$79.42{\pm}1.71$	$94.33{\pm}0.19$	$90.70 {\pm} 0.04$	$89.79{\pm}1.08$	
	TimeSformer	$76.23{\pm}0.33$	$93.20{\pm}0.04$	$88.89 {\pm} 0.66$	$89.59 {\pm} 0.07$	
	Swin	$\textbf{82.50}{\pm}\textbf{2.35}$	$95.13{\pm}0.35$	$92.02{\pm}0.69$	$91.54{\pm}0.03$	

Model	Accuracy	Precision	Recall	
PhaseLSTM (Twinanda et al., 2017)	$79.68{\pm}0.07$	$72.85{\pm}0.10$	$73.45{\pm}0.12$	
EndoLSTM (Twinanda, 2017)	$80.85 {\pm} 0.17$	$76.81{\pm}2.62$	$72.07{\pm}0.64$	
MTRCNet (Jin et al., 2020)	$82.76 {\pm} 0.01$	$76.08 {\pm} 0.01$	$78.02{\pm}0.13$	
ResNetLSTM (Jin et al., 2018)	$86.58{\pm}1.01$	$80.53{\pm}1.59$	$79.94{\pm}1.79$	
TeCNO (Czempiel et al., 2020)	$88.56 {\pm} 0.27$	$81.64{\pm}0.41$	$85.24{\pm}1.06$	
I3D+UniGRU	$88.27{\pm}1.04$	$80.18 {\pm} 0.20$	$80.58{\pm}1.97$	
SlowFast+UniGRU	$90.47 {\pm} 0.46$	$83.12{\pm}2.09$	$82.33{\pm}1.22$	
TimeSformer+UniGRU	$90.42{\pm}0.47$	$\textbf{86.05}{\pm}\textbf{1.13}$	$83.20{\pm}1.80$	
Swin+UniGRU	$90.88{\pm}0.01$	$85.07 {\pm} 1.74$	$85.59{\pm}0.53$	

Model	Accuracy	Precision	Recall	
(Qi et al., 2019)	87.10	_	_	
CB-RCNeSt (Xia and Jia, 2021)	96.37	94.89	94.69	
I3D+UniGRU	$93.69{\pm}0.21$	$91.27{\pm}0.02$	$91.05{\pm}0.41$	
SlowFast+UniGRU	$92.08{\pm}0.32$	$89.30{\pm}1.22$	$88.63 {\pm} 0.32$	
TimeSformer+UniGRU	$94.44{\pm}0.01$	$92.43 {\pm} 0.25$	$91.89{\pm}0.23$	
Swin+UniGRU	$94.53 {\pm} 0.09$	$93.05{\pm}0.09$	$91.61{\pm}0.16$	

Backbone Method	Temp. Model Method	mAP	Accuracy	Precision	Recall
Freeze (init: hospA)	Freeze (init: hospA)	72.92	96.34	53.26	53.66
Train (init: K400)	Train (init: random)	83.01	93.47	68.84	75.99
Freeze (init: hospA)	Train (init: random)	90.85	97.15	81.65	89.01
Train (init: hospA)	Train (init: random)	91.64	97.64	87.61	84.08
Mottaghi et al. (2022)	Train (init: random)	88.99	97.26	86.72	86.02

Key Conclusions

- We establish a precedence of using clip-wise models for activity recognition in surgical video datasets. We show that pretraining is essential for convergence on small datasets.
- Video Swin Transformer & BiGRU is the strongest performing model.
- We achieved the new state-of-the-art performance on Cholec80 and OR-AR activity recognition set. Strong performance on Cataract-101.
- We demonstrate the adaptability of our model to domain shifts with minimal supervision.

Cataract-101

OR-AR